TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view StereoDownload PDF

Published: 13 Sept 2021, Last Modified: 05 May 2023CoRL2021 PosterReaders: Everyone
Keywords: SLAM, Dense Mapping, Multi-view Stereo, Deep Learning
Abstract: In this paper, we present TANDEM a real-time monocular tracking and dense mapping framework. For pose estimation, TANDEM performs photometric bundle adjustment based on a sliding window of keyframes. To increase the robustness, we propose a novel tracking front-end that performs dense direct image alignment using depth maps rendered from a global model that is built incrementally from dense depth predictions. To predict the dense depth maps, we propose Cascade View-Aggregation MVSNet (CVA-MVSNet) that utilizes the entire active keyframe window by hierarchically constructing 3D cost volumes with adaptive view aggregation to balance the different stereo baselines between the keyframes. Finally, the predicted depth maps are fused into a consistent global map represented as a truncated signed distance function (TSDF) voxel grid. Our experimental results show that TANDEM outperforms other state-of-the-art traditional and learning-based monocular visual odometry (VO) methods in terms of camera tracking. Moreover, TANDEM shows state-of-the-art real-time 3D reconstruction performance. Webpage: https://go.vision.in.tum.de/tandem
Supplementary Material: zip
Poster: png
14 Replies