BenthIQ: a Transformer-Based Benthic Classification Model for Coral Restoration

21 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: coral reefs, benthos, remote sensing, semantic segmentation, convolutional neural networks, vision transformers
TL;DR: In this work, we introduced a encoder-decoder architecture with a ViT backbone for the semantic segmentation of aerial reef imagery.
Abstract: Coral reefs are vital for marine biodiversity, coastal protection, and supporting human livelihoods globally. However, they are increasingly threatened by mass bleaching events, pollution, and unsustainable practices with the advent of climate change. Monitoring the health of these ecosystems is crucial for effective restoration and management. Current methods for creating benthic composition maps often compromise between spatial coverage and resolution. In this paper, we introduce BenthIQ, a multi-label semantic segmentation network designed for high-precision classification of underwater substrates, including live coral, algae, rock, and sand. Although commonly deployed CNNs are limited in learning long-range semantic information, transformer-based models have recently achieved state-of-the-art performance in vision tasks such as object detection and image classification. We integrate the hierarchical Swin Transformer as the backbone of a U-shaped encoder-decoder architecture for local-global semantic feature learning. Using a real-world case study in French Polynesia, we demonstrate that our approach outperforms traditional CNN and attention-based models on pixel-wise classification of shallow reef imagery.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3815
Loading