Supervised and Semi-Supervised Diffusion Maps with Label-Driven Diffusion

Published: 22 Jan 2025, Last Modified: 17 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Manifold Learning, Diffusion Maps, Supervised dimension reduction, Multi-view learning
Abstract: In this paper, we introduce Supervised Diffusion Maps (SDM) and Semi-Supervised Diffusion Maps (SSDM), which transform the well-known unsupervised dimensionality reduction algorithm, Diffusion Maps, into supervised and semi-supervised learning tools. The proposed methods, SDM and SSDM, are based on our new approach that treats the labels as a second view of the data. This unique framework allows us to incorporate ideas from multi-view learning. Specifically, we propose constructing two affinity kernels corresponding to the data and the labels. We then propose a multiplicative interpolation scheme of the two kernels, whose purpose is twofold. First, our scheme extracts the common structure underlying the data and the labels by defining a diffusion process driven by the data and the labels. This label-driven diffusion produces an embedding that emphasizes the properties relevant to the label-related task. Second, the proposed interpolation scheme balances the influence of the two kernels. We show on multiple benchmark datasets that the embedding learned by SDM and SSDM is more effective in downstream regression and classification tasks than existing unsupervised, supervised, and semi-supervised nonlinear dimension reduction methods.
Supplementary Material: zip
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6019
Loading