Keywords: Music Generation, Physiological Sensing, Autonomous Music Agents
Abstract: We present a multimodal system for personalized music generation that integrates physiological sensing, LLM-based reasoning, and controllable audio synthesis. A millimeter-wave radar sensor non-invasively captures heart rate and respiration rate. These physiological signals, combined with environmental state, are interpreted by a reasoning agent to infer symbolic musical descriptors, such as tempo, mood intensity, and traditional Chinese pentatonic modes, which are then expressed as structured prompts to guide a diffusion-based audio model in synthesizing expressive melodies. The system emphasizes cultural grounding through tonal embeddings and enables adaptive, embodied music interaction. To evaluate the system, we adopt a research-creation methodology combining case studies, expert feedback, and targeted control experiments. Results show that physiological variations can modulate musical features in meaningful ways, and tonal conditioning enhances alignment with intended modal characteristics. Expert users reported that the system affords intuitive, culturally resonant musical responses and highlighted its potential for therapeutic and interactive applications. This work demonstrates a novel bio-musical feedback loop linking radar-based sensing, prompt reasoning, and generative audio modeling.
Submission Number: 2
Loading