Contextual Attention for Hand Detection in the WildOpen Website

10 Sept 2021OpenReview Archive Direct UploadReaders: Everyone
Abstract: We present Hand-CNN, a novel convolutional network architecture for detecting hand masks and predicting hand orientations in unconstrained images. Hand-CNN extends MaskRCNN with a novel attention mechanism to incorporate contextual cues in the detection process. This attention mechanism can be implemented as an efficient network module that captures non-local dependencies between features. This network module can be inserted at different stages of an object detection network, and the entire detector can be trained end-to-end. We also introduce large-scale annotated hand datasets containing hands in unconstrained images for training and evaluation. We show that Hand-CNN outperforms existing methods on the newly collected datasets and the publicly available PASCAL VOC human layout dataset. Data and code: https://www3.cs.stonybrook.edu/~cvl/projects/hand_det_attention/.
0 Replies

Loading