Abstract: Many propagation and search algorithms have been developed for constraint satisfaction problems (CSPs). In a standard CSP all variables are existentially quantified. The CSP formalism can be extended to allow universally quantified variables, in which case the complexity of the basic reasoning tasks rises from NP-complete to PSPACE-complete. Such problems have, so far, been studied mainly in the context of quantified Boolean formulae. Little work has been done on problems with discrete non-Boolean domains. We attempt to fill this gap by extending propagation and search algorithms from standard CSPs to the quantified case. We also show how the notion of value interchangeability can be exploited to break symmetries and speed up search by orders of magnitude. Finally, we test experimentally the algorithms and methods proposed.
Loading