Abstract: Neural networks (NNs) have been driving machine learning progress in recent years, but their larger models present challenges in resource-limited environments. Weight pruning reduces the computational demand, often with performance degradation and long training procedures. This work introduces distilled gradual pruning with pruned fine-tuning (DG2PF), a comprehensive algorithm that iteratively prunes pretrained NNs using knowledge distillation. We employ a magnitude-based unstructured pruning function that selectively removes a specified proportion of unimportant weights from the network. This function also leads to an efficient compression of the model size while minimizing classification accuracy loss. Additionally, we introduce a simulated pruning strategy with the same effects of weight recovery but while maintaining stable convergence. Furthermore, we propose a multistep self-knowledge distillation strategy to effectively transfer the knowledge of the full, unpruned network to the pruned counterpart. We validate the performance of our algorithm through extensive experimentation on diverse benchmark datasets, including CIFAR-10 and ImageNet, as well as a set of model architectures. The results highlight how our algorithm prunes and optimizes pretrained NNs without substantially degrading their classification accuracy while delivering significantly faster and more compact models.
Loading