Abstract: Masked Autoencoders (MAEs) learn rich semantic representations in audio classification through an efficient self-supervised reconstruction task. However, general-purpose models fail to generalize well when applied directly to fine-grained audio domains. Specifically, bird-sound classification requires distinguishing subtle inter-species differences and managing high intra-species acoustic variability, revealing the performance limitations of general-domain Audio-MAEs. This work demonstrates that bridging this domain gap domain gap requires full-pipeline adaptation, not just domain-specific pretraining data. We systematically revisit and adapt the pretraining recipe, fine-tuning methods, and frozen feature utilization to bird sounds using BirdSet, a large-scale bioacoustic dataset comparable to AudioSet. Our resulting Bird-MAE achieves new state-of-the-art results in BirdSet's multi-label classification benchmark. Additionally, we introduce the parameter-efficient prototypical probing, enhancing the utility of frozen MAE representations and closely approaching fine-tuning performance in low-resource settings. Bird-MAE's prototypical probes outperform linear probing by up to 37 percentage points in mean average precision and narrow the gap to fine-tuning across BirdSet downstream tasks. Bird-MAE also demonstrates robust few-shot capabilities with prototypical probing in our newly established few-shot benchmark on BirdSet, highlighting the potential of tailored self-supervised learning pipelines for fine-grained audio domains.
Submission Length: Regular submission (no more than 12 pages of main content)
Code: https://github.com/DBD-research-group/Bird-MAE
Assigned Action Editor: ~Chuan-Sheng_Foo1
Submission Number: 5030
Loading