Abstract: The Bavarian Academy of Sciences and Humanities aims to digitize the Medieval Latin Dictionary. This dictionary entails record cards referring to lemmas in medieval Latin, a low-resource language. A crucial step of the digitization process is the handwritten text recognition (HTR) of the handwritten lemmas on the record cards. In our work, we introduce an end-to-end pipeline, tailored for the medieval Latin dictionary, for locating, extracting, and transcribing the lemmas. We employ two state-of-the-art image segmentation models to prepare the initial data set for the HTR task. Further, we experiment with different transformer-based models and conduct a set of experiments to explore the capabilities of different combinations of vision encoders with a GPT-2 decoder. Additionally, we also apply extensive data augmentation resulting in a highly competitive model. The best-performing setup achieved a character error rate of 0.015, which is even superior to the commercial Google Cloud Vision model, and shows more stable performance.
Loading