Track: Machine learning: computational method and/or computational results
Nature Biotechnology: Yes
Keywords: flow matching, co-teaching, protein design, antibody affinity maturation, protein property prediction
TL;DR: We introduce AffinityFlow, which explores guided flows for antibody affinity maturation.
Abstract: Antibodies are widely used as therapeutics, but their development requires costly affinity maturation, involving iterative mutations to enhance binding affinity. This paper explores a sequence-only scenario for affinity maturation, using solely antibody and antigen sequences. Recently AlphaFlow wraps AlphaFold within flow matching to generate diverse protein structures, enabling a sequence-conditioned generative model of structure. Building on this, we propose an \textit{alternating optimization} framework that (1) fixes the sequence to guide structure generation toward high binding affinity using a structure-based predictor, then (2) applies inverse folding to create sequence mutations, refined by a sequence-based predictor. A key challenge is the lack of labeled data for training both predictors. To address this, we develop a \textit{co-teaching} module that incorporates valuable information from noisy biophysical energies into predictor refinement. The sequence-based predictor selects consensus samples to teach the structure-based predictor, and vice versa. Our method, \textit{AffinityFlow}, achieves state-of-the-art performance in affinity maturation experiments.
Anonymization: This submission has been anonymized for double-blind review via the removal of identifying information such as names, affiliations, and identifying URLs.
Presenter: ~Can_Chen3
Format: Maybe: the presenting author will attend in person, contingent on other factors that still need to be determined (e.g., visa, funding).
Funding: No, the presenting author of this submission does *not* fall under ICLR’s funding aims, or has sufficient alternate funding.
Submission Number: 27
Loading