Abstract: Segmentation models for remote sensing imagery are usually trained on the segmentation task alone. However, for many applications, the class boundaries carry semantic value. To account for this, we propose a new approach that unites both tasks within a single deep learning model. The proposed network architecture follows the successful encoder-decoder approach, and is improved by employing deep supervision at multiple resolution levels, as well as merging these resolution levels into a final prediction using a hierarchical attention mechanism. This framework is trained to detect the coastline in Sentinel-1 images of the Antarctic coastline. Its performance is then compared to conventional single-task approaches, and shown to outperform these methods. The code is available at https://github.com/khdlr/HED-UNet.
0 Replies
Loading