Scalable Batch-Mode Deep Bayesian Active Learning via Equivalence Class AnnealingDownload PDF

Published: 01 Feb 2023, Last Modified: 20 Feb 2023ICLR 2023 posterReaders: Everyone
Keywords: Bayesian Neural Network, Batch-Mode Active Learning, Decision-Centric Data Acquisition, Scalability
Abstract: Active learning has demonstrated data efficiency in many fields. Existing active learning algorithms, especially in the context of batch-mode deep Bayesian active models, rely heavily on the quality of uncertainty estimations of the model, and are often challenging to scale to large batches. In this paper, we propose Batch-BALanCe, a scalable batch-mode active learning algorithm, which combines insights from decision-theoretic active learning, combinatorial information measure, and diversity sampling. At its core, Batch-BALanCe relies on a novel decision-theoretic acquisition function that facilitates differentiation among different equivalence classes. Intuitively, each equivalence class consists of hypotheses (e.g., posterior samples of deep neural networks) with similar predictions, and Batch-BALanCe adaptively adjusts the size of the equivalence classes as learning progresses. To scale up the computation of queries to large batches, we further propose an efficient batch-mode acquisition procedure, which aims to maximize a novel combinatorial information measure defined through the acquisition function. We show that our algorithm can effectively handle realistic multi-class classification tasks, and achieves compelling performance on several benchmark datasets for active learning under both low- and large-batch regimes.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
TL;DR: We propose a new scalable batch-mode active learning algorithm
18 Replies

Loading