Abstract: Recent advancements in large language models (LLMs) have broadened their application scope but revealed challenges in balancing capabilities across general knowledge, coding, and mathematics. To address this, we introduce a Collaborative and Semantic Experts (CoE) approach for supervised fine-tuning (SFT), which employs a two-phase training strategy. Initially, expert training fine-tunes the feed-forward network on specialized datasets, developing distinct experts in targeted domains. Subsequently, expert leveraging synthesizes these trained experts into a structured model with semantic guidance to activate specific experts, enhancing performance and interpretability. Evaluations on comprehensive benchmarks across MMLU, HumanEval, GSM8K, MT-Bench, and AlpacaEval confirm CoE's efficacy, demonstrating improved performance and expert collaboration in diverse tasks, significantly outperforming traditional SFT methods.
Loading