Just Add Force for Delicate Robot Policies

Published: 29 Oct 2024, Last Modified: 03 Nov 2024CoRL 2024 Workshop MRM-D PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: adaptive grasping, contact rich manipulation, diffusion, dataset
TL;DR: We collect 130 adaptive grasp trajectories with force feedback on delicate objects; diffusion policies trained on forceful trajectories replicate behavior and generalize to unseen objects, unlike gripper position-only policies.
Abstract: Robot trajectories used for learning end-to-end robot policies typically contain end-effector and gripper position, workspace images, and language. Policies learned from such trajectories are unsuitable for delicate grasping, which require tightly coupled and precise gripper force and gripper position. We collect and make publically available 130 trajectories with force feedback of successful grasps on 30 unique objects. Our current-based method for sensing force, albeit noisy, is gripper-agnostic and requires no additional hardware. We train and evaluate two diffusion policies: one with (forceful) the collected force feedback and one without (position-only). We find that forceful policies are superior to position-only policies for delicate grasping and are able to generalize to unseen delicate objects, while reducing grasp policy latency by near 4x, relative to LLM-based methods. With our promising results on limited data, we hope to signal to others to consider investing in collecting force and other such tactile information in new datasets, enabling more robust, contact-rich manipulation in future robot foundation models. Our data, code, models, and videos are viewable at https://justaddforce.github.io/.
Submission Number: 40
Loading