Noisy Interpolation Learning with Shallow Univariate ReLU Networks

Published: 16 Jan 2024, Last Modified: 21 Mar 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Interpolation Learning, Benign Overfitting, ReLU Networks
Submission Guidelines: I certify that this submission complies with the submission instructions as described on
TL;DR: We study the overfitting behavior of min-norm networks in the noisy regression setting.
Abstract: Understanding how overparameterized neural networks generalize despite perfect interpolation of noisy training data is a fundamental question. Mallinar et. al. (2022) noted that neural networks seem to often exhibit ``tempered overfitting'', wherein the population risk does not converge to the Bayes optimal error, but neither does it approach infinity, yielding non-trivial generalization. However, this has not been studied rigorously. We provide the first rigorous analysis of the overfiting behaviour of regression with minimum norm ($\ell_2$ of weights), focusing on univariate two-layer ReLU networks. We show overfitting is tempered (with high probability) when measured with respect to the $L_1$ loss, but also show that the situation is more complex than suggested by Mallinar et. al., and overfitting is catastrophic with respect to the $L_2$ loss, or when taking an expectation over the training set.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: learning theory
Submission Number: 774