JEM++: Improved Techniques for Training JEMDownload PDFOpen Website

2021 (modified: 08 Sept 2022)ICCV 2021Readers: Everyone
Abstract: Joint Energy-based Model (JEM) [12] is a recently proposed hybrid model that retains strong discriminative power of modern CNN classifiers, while generating samples rivaling the quality of GAN-based approaches. In this paper, we propose a variety of new training procedures and architecture features to improve JEM’s accuracy, training stability, and speed altogether. 1) We propose a proximal SGLD to generate samples in the proximity of samples from previous step, which improves the stability. 2) We further treat the approximate maximum likelihood learning of EBM as a multi-step differential game, and extend the YOPO framework [47] to cut out redundant calculations during backpropagation, which accelerates the training substantially. 3) Rather than initializing SGLD chain from random noise, we introduce a new informative initialization that samples from a distribution estimated from training data. 4) This informative initialization allows us to enable batch normalization in JEM, which further releases the power of modern CNN architectures for hybrid modeling. <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sup>
0 Replies

Loading