Learning Augmented Energy Minimization via Speed ScalingDownload PDFOpen Website

2020 (modified: 03 Nov 2022)CoRR 2020Readers: Everyone
Abstract: As power management has become a primary concern in modern data centers, computing resources are being scaled dynamically to minimize energy consumption. We initiate the study of a variant of the classic online speed scaling problem, in which machine learning predictions about the future can be integrated naturally. Inspired by recent work on learning-augmented online algorithms, we propose an algorithm which incorporates predictions in a black-box manner and outperforms any online algorithm if the accuracy is high, yet maintains provable guarantees if the prediction is very inaccurate. We provide both theoretical and experimental evidence to support our claims.
0 Replies

Loading