Exploiting Convolution Filter Patterns for Transfer LearningDownload PDFOpen Website

2017 (modified: 03 Nov 2022)ICCV Workshops 2017Readers: Everyone
Abstract: In this paper, we introduce a new regularization technique for transfer learning. The aim of the proposed approach is to capture statistical relationships among convolution filters learned from a well-trained network and transfer this knowledge to another network. Since convolution filters of the prevalent deep Convolutional Neural Network (CNN) models share a number of similar patterns, in order to speed up the learning procedure, we capture such correlations by Gaussian Mixture Models (GMMs) and transfer them using a regularization term. We have conducted extensive experiments on the CIFAR10, Places2, and CM-Places datasets to assess generalizability, task transferability, and cross-model transferability of the proposed approach, respectively. The experimental results show that the feature representations have efficiently been learned and transferred through the proposed statistical regularization scheme. Moreover, our method is an architecture independent approach, which is applicable for a variety of CNN architectures.
0 Replies

Loading