Combating Data Laundering in LLM Training

ICLR 2026 Conference Submission16602 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Unauthorized data usage detection, data laundering
TL;DR: When unauthorized LLM training data gets laundered through synthetic transformation to wash away privacy breach, data right owners can fight back by reverse-engineering the laundering practice.
Abstract: Data rights owners can detect unauthorized data use in large language model (LLM) training by querying with proprietary samples. Often, superior performance (e.g., higher confidence or lower loss) on a sample relative to the untrained data implies it was part of the training corpus, as LLMs tend to perform better on data they have seen during training. However, this detection becomes fragile under data laundering, a practice of transforming the stylistic form of proprietary data, while preserving critical information to obfuscate data provenance. When an LLM is trained exclusively on such laundered variants, it no longer performs better on originals, erasing the signals that standard detections rely on. We counter this by inferring the unknown laundering transformation from black-box access to the target LLM and, via an auxiliary LLM, synthesizing queries that mimic the laundered data, even if rights owners have only the originals. As the search space of finding true laundering transformations is infinite, we abstract such a process into a high-level transformation goal (e.g., "lyrical rewriting") and concrete details (e.g., "with vivid imagery"), and introduce synthesis data reversion (SDR) that instantiates this abstraction. SDR first identifies the most probable goal that synthesis should step into to narrow the search; it then iteratively refines details, such that synthesized queries gradually elicit stronger detection signals from target LLM. Evaluated on the MIMIR benchmark against diverse laundering practices and target LLM families (Pythia, Llama2, and Falcon), SDR consistently strengthens data misuse detection, providing a practical countermeasure to data laundering.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Submission Number: 16602
Loading