Seven Myths in Machine Learning ResearchDownload PDFOpen Website

2019 (modified: 25 Apr 2023)CoRR 2019Readers: Everyone
Abstract: We present seven myths commonly believed to be true in machine learning research, circa Feb 2019. This is an archival copy of the blog post at https://crazyoscarchang.github.io/2019/02/16/seven-myths-in-machine-learning-research/ Myth 1: TensorFlow is a Tensor manipulation library Myth 2: Image datasets are representative of real images found in the wild Myth 3: Machine Learning researchers do not use the test set for validation Myth 4: Every datapoint is used in training a neural network Myth 5: We need (batch) normalization to train very deep residual networks Myth 6: Attention $>$ Convolution Myth 7: Saliency maps are robust ways to interpret neural networks
0 Replies

Loading