Better Safe than Sorry: Pre-training CLIP against Targeted Data Poisoning and Backdoor Attacks

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Contrastive Learning, Adversarial Learning, Model Robustness
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Contrastive Language-Image Pre-training (CLIP) on large image-caption datasets has achieved remarkable success in zero-shot classification and enabled transferability to new domains. However, CLIP is extremely more vulnerable to targeted data poisoning and backdoor attacks, compared to supervised learning. Perhaps surprisingly, poisoning 0.0001% of CLIP pre-training data is enough to make targeted data poisoning attacks successful. This is four orders of magnitude smaller than what is required to poison supervised models. Despite this vulnerability, existing methods are very limited in defending CLIP models during pre-training. In this work, we propose a strong defense, SAFECLIP, to safely pre-train CLIP against targeted data poisoning and backdoor attacks. SAFECLIP warms up the model by applying unimodal contrastive learning (CL) on image and text modalities separately. Then, it carefully divides the data into safe and risky subsets. SAFECLIP trains on the risky data by applying unimodal CL to image and text modalities separately, and trains on the safe data using the CLIP loss. By gradually increasing the size of the safe subset during the training, SAFECLIP effectively breaks targeted data poisoning and backdoor attacks without harming the CLIP performance. Our extensive experiments show that SAFECLIP decrease the attack success rate of targeted data poisoning attacks from 93.75% to 0% and that of the backdoor attacks from 100% to 0%, without harming the CLIP performance on various datasets.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7705
Loading