How to Verify Any (Reasonable) Distribution Property: Computationally Sound Argument Systems for Distributions

Published: 22 Jan 2025, Last Modified: 28 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: property testing, distribution testing, interactive proofs, data science, verification
Abstract: As statistical analyses become more central to science, industry and society, there is a growing need to ensure correctness of their results. Approximate correctness can be verified by replicating the entire analysis, but can we verify without replication? We focus on distribution testing problems: verifying that an unknown distribution is close to having a claimed property. Our main contribution is an interactive protocol between a verifier and an untrusted prover, which can be used to verify any distribution property that can be decided in polynomial time given a full and explicit description of the distribution. If the distribution is at statistical distance $\varepsilon$ from having the property, then the verifier rejects with high probability. This soundness property holds against any polynomial-time strategy that a cheating prover might follow, assuming the existence of collision-resistant hash functions (a standard assumption in cryptography). For distributions over a domain of size $N$, the protocol consists of $4$ messages and the communication complexity and verifier runtime are roughly $\widetilde{O}\left(\sqrt{N} / \varepsilon^2 \right)$. The verifier's sample complexity is $\widetilde{O}\left(\sqrt{N} / \varepsilon^2 \right)$, and this is optimal up to $\text{polylog}(N)$ factors (for any protocol, regardless of its communication complexity). Even for simple properties, approximately deciding whether an unknown distribution has the property can require quasi-linear sample complexity and running time. For any such property, our protocol provides a quadratic speedup over replicating the analysis.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9416
Loading