Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure

Abstract: Author summary The brain encodes information by ensembles of neurons, and recent technological developments allow researchers to simultaneously record from over thousands of neurons. Neurons exhibit spontaneous activity patterns, which are constrained by experience and development, limiting the portion of state space that is effectively visited. Patterns of spontaneous activity may contribute to shaping the synaptic connectivity matrix and contribute to memory consolidation, and synaptic plasticity formation depends crucially on the temporal spiking order among neurons. Hence, the unsupervised detection of spike sequences is a sine qua non for understanding how spontaneous activity contributes to memory formation. Yet, sequence detection presents major methodological challenges like the sparsity and stochasticity of neuronal output, and its high dimensionality. We propose a dissimilarity measure between neuronal patterns based on optimal transport theory, determining their similarity from the pairwise cross-correlation matrix, which can be taken as a proxy of the “trace” that is left on the synaptic matrix. We then perform unsupervised clustering and visualization of patterns using density clustering on the dissimilarity matrix and low-dimensional embedding techniques. This method does not require binning of spike times, is robust to noise, jitter and rate fluctuations, and can detect more patterns than the number of neurons.
0 Replies
Loading