Distinct Class-Specific Saliency Maps for Weakly Supervised Semantic SegmentationDownload PDFOpen Website

16 Nov 2022OpenReview Archive Direct UploadReaders: Everyone
Abstract: In this paper, we deal with a weakly supervised semantic segmentation problem where only training images with image-level labels are available. We propose a weakly supervised semantic segmentation method which is based on CNN-based class-specific saliency maps and fully-connected CRF. To obtain distinct class-specific saliency maps which can be used as unary potentials of CRF, we propose a novel method to estimate class saliency maps which improves the method proposed by Simonyan et al. (2014) significantly by the following improvements: (1) using CNN derivatives with respect to feature maps of the intermediate convolutional layers with up-sampling instead of an input image; (2) subtracting the saliency maps of the other classes from the saliency maps of the target class to differentiate target objects from other objects; (3) aggregating multiple-scale class saliency maps to compensate lower resolution of the feature maps. After obtaining distinct class saliency maps, we apply fully-connected CRF by using the class maps as unary potentials. By the experiments, we show that the proposed method has outperformed state-of-the-art results with the PASCAL VOC 2012 dataset under the weakly-supervised setting.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview