Baleen: Robust Multi-Hop Reasoning at Scale via Condensed RetrievalDownload PDF

Published: 09 Nov 2021, Last Modified: 20 Oct 2024NeurIPS 2021 SpotlightReaders: Everyone
Keywords: neural retrieval, multi-hop question answering, claim verification, reasoning, ColBERT
TL;DR: We propose a system for multi-hop retrieval, with innovations in the system architecture, the retrieval modeling, and supervision.
Abstract: Multi-hop reasoning (i.e., reasoning across two or more documents) is a key ingredient for NLP models that leverage large corpora to exhibit broad knowledge. To retrieve evidence passages, multi-hop models must contend with a fast-growing search space across the hops, represent complex queries that combine multiple information needs, and resolve ambiguity about the best order in which to hop between training passages. We tackle these problems via Baleen, a system that improves the accuracy of multi-hop retrieval while learning robustly from weak training signals in the many-hop setting. To tame the search space, we propose condensed retrieval, a pipeline that summarizes the retrieved passages after each hop into a single compact context. To model complex queries, we introduce a focused late interaction retriever that allows different parts of the same query representation to match disparate relevant passages. Lastly, to infer the hopping dependencies among unordered training passages, we devise latent hop ordering, a weak-supervision strategy in which the trained retriever itself selects the sequence of hops. We evaluate Baleen on retrieval for two-hop question answering and many-hop claim verification, establishing state-of-the-art performance.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 5 code implementations](https://www.catalyzex.com/paper/baleen-robust-multi-hop-reasoning-at-scale/code)
11 Replies

Loading