ImmersePro: End-to-End Stereo Video Synthesis Via Implicit Disparity Learning

21 Sept 2024 (modified: 15 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Video Stereo Conversion; Stereo Vision;
TL;DR: Convert 2D videos to stereo videos.
Abstract:

We introduce \textit{ImmersePro}, an innovative framework specifically designed to transform single-view videos into stereo videos. This framework utilizes a novel dual-branch architecture comprising a disparity branch and a context branch on video data by leveraging spatial-temporal attention mechanisms. \textit{ImmersePro} employs implicit disparity guidance, enabling the generation of stereo pairs from video sequences without the need for explicit disparity maps, thus reducing potential errors associated with disparity estimation models. In addition to the technical advancements, we introduce the YouTube-SBS dataset, a comprehensive collection of 423 stereo videos sourced from YouTube. This dataset is unprecedented in its scale, featuring over 7 million stereo pairs, and is designed to facilitate training and benchmarking of stereo video generation models. Our experiments demonstrate the effectiveness of \textit{ImmersePro} in producing high-quality stereo videos, offering significant improvements over existing methods. Compared to the best competitor stereo-from-mono we quantitatively improve the results by 11.76% (L1), 6.39% (SSIM), and 5.10% (PSNR).

Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Submission Number: 2396
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview