Top-k temporal keyword search over social media dataDownload PDFOpen Website

Published: 01 Jan 2017, Last Modified: 13 Feb 2024World Wide Web 2017Readers: Everyone
Abstract: Social media services have already become main sources for monitoring emerging topics and sensing real-life events. A social media platform manages social stream consisting of a huge volume of timestamped user generated data, including original data and repost data. However, previous research on keyword search over social media data mainly emphasizes on the recency of information. In this paper, we first propose a problem of top-k most significant temporal keyword query to enable more complex query analysis. It returns top-k most popular social items that contain the keywords in the given query time window. Then, we design a temporal inverted index with two-tiers posting list to index social time series and a segment store to compute the exact social significance of social items. Next, we implement a basic query algorithm based on our proposed index structure and give a detailed performance analysis on the query algorithm. From the analysis result, we further refine our query algorithm with a piecewise maximum approximation (PMA) sketch. Finally, extensive empirical studies on a real-life microblog dataset demonstrate the combination of two-tiers posting list and PMA sketch achieves remarkable performance improvement under different query settings.
0 Replies

Loading