Euclidean-Norm-Induced Schatten-p Quasi-Norm Regularization for Low-Rank Tensor Completion and Tensor Robust Principal Component Analysis

Published: 03 Jan 2023, Last Modified: 28 Feb 2023Accepted by TMLREveryoneRevisionsBibTeX
Abstract: The nuclear norm and Schatten-$p$ quasi-norm are popular rank proxies in low-rank matrix recovery. However, computing the nuclear norm or Schatten-$p$ quasi-norm of a tensor is hard in both theory and practice, hindering their application to low-rank tensor completion (LRTC) and tensor robust principal component analysis (TRPCA). In this paper, we propose a new class of tensor rank regularizers based on the Euclidean norms of the CP component vectors of a tensor and show that these regularizers are monotonic transformations of tensor Schatten-$p$ quasi-norm. This connection enables us to minimize the Schatten-$p$ quasi-norm in LRTC and TRPCA implicitly via the component vectors. The method scales to big tensors and provides an arbitrarily sharper rank proxy for low-rank tensor recovery compared to the nuclear norm. On the other hand, we study the generalization abilities of LRTC with the Schatten-$p$ quasi-norm regularizer and LRTC with the proposed regularizers. The theorems show that a relatively sharper regularizer leads to a tighter error bound, which is consistent with our numerical results. Particularly, we prove that for LRTC with Schatten-$p$ quasi-norm regularizer on $d$-order tensors, $p=1/d$ is always better than any $p>1/d$ in terms of the generalization ability. We also provide a recovery error bound to verify the usefulness of small $p$ in the Schatten-$p$ quasi-norm for TRPCA. Numerical results on synthetic data and real data demonstrate the effectiveness of the regularization methods and theorems.
License: Creative Commons Attribution 4.0 International (CC BY 4.0)
Submission Length: Long submission (more than 12 pages of main content)
Assigned Action Editor: ~Bamdev_Mishra1
Submission Number: 171