Biased LLMs can Influence Political Decision-Making

ACL ARR 2025 February Submission4204 Authors

15 Feb 2025 (modified: 09 May 2025)ACL ARR 2025 February SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: As modern large language models (LLMs) become integral to everyday tasks, concerns about their inherent biases and their potential impact on human decision-making have emerged. While bias in models are well-documented, less is known about how these biases influence human decisions. This paper presents two interactive experiments investigating the effects of partisan bias in LLMs on political opinions and decision-making. Participants interacted freely with either a biased liberal, biased conservative, or unbiased control model while completing these tasks. We found that participants exposed to partisan biased models were significantly more likely to adopt opinions and make decisions which matched the LLMs bias. Even more surprising, this influence was seen when the model bias and personal political partisanship of the participant were opposite. However, we also discovered that prior knowledge of AI was weakly correlated with a reduction of the impact of the bias, highlighting the possible importance of AI education for robust mitigation of bias effects. Our findings not only highlight the critical effects of interacting with biased LLMs and its ability to impact public discourse and political conduct, but also highlights potential techniques for mitigating these risks in the future.
Paper Type: Long
Research Area: Human-Centered NLP
Research Area Keywords: human-AI interaction, human factors in NLP, values and culture
Contribution Types: Surveys
Languages Studied: English
Submission Number: 4204
Loading