A Block Coordinate Descent Method for Nonsmooth Composite Optimization under Orthogonality Constraints

ICLR 2025 Conference Submission6133 Authors

26 Sept 2024 (modified: 02 Dec 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Orthogonality Constraints, Nonconvex Optimization, Nonsmooth Composite Optimization, Block Coordinate Descent, Convergence Analysis
Abstract: Nonsmooth composite optimization with orthogonality constraints is crucial in statistical learning and data science, but it presents challenges due to its nonsmooth objective and computationally expensive, non-convex constraints. In this paper, we propose a new approach called \textbf{OBCD}, which leverages Block Coordinate Descent (BCD) to address these challenges. \textbf{OBCD} is a feasible method with a small computational footprint. In each iteration, it updates $k$ rows of the solution matrix, where $k \geq 2$, while globally solving a small nonsmooth optimization problem under orthogonality constraints. We prove that the limiting points of \textbf{OBCD}, referred to as (global) block-$k$ stationary points, offer stronger optimality than standard critical points. Furthermore, we show that \textbf{OBCD} converges to $\epsilon$-block-$k$ stationary points with an ergodic convergence rate of $\mathcal{O}(1/\epsilon)$. Additionally, under the Kurdyka-Lojasiewicz (KL) inequality, we establish the non-ergodic convergence rate of \textbf{OBCD}. We also extend \textbf{OBCD} with breakpoint searching methods for subproblem solving and greedy strategies for working set selection. Comprehensive experiments demonstrate the superior performance of our approach across various tasks.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6133
Loading