Transfer Learning of Wi-Fi Handwritten Signature Signals for Identity Verification based on the Kernel and the Range Space Projection

Abstract: In this paper, we propose a system for identity verification based on the gesture signals of handwritten signature captured by the Wi-Fi CSI wave packets at different positions using transfer learning. Essentially, a ConvNet is first pretrained using the Wi-Fi signature signals collected from one position. Subsequently, the pretrained feature extractor is transferred to recognize signals collected from another position via a rapid retraining process. We utilize the kernel and the range space projection learning when we retrain the transferred model. Our experimental results on an in-house Wi-Fi handwritten signature signal dataset show that the signature signals from the new position can be effectively classified without needing to retrain the model from scratch.
0 Replies
Loading