An R-Convolution Graph Kernel Based on Fast Discrete-Time Quantum WalkDownload PDFOpen Website

2022 (modified: 15 Nov 2022)IEEE Trans. Neural Networks Learn. Syst. 2022Readers: Everyone
Abstract: In this article, a novel R-convolution kernel, named the fast quantum walk kernel (FQWK), is proposed for unattributed graphs. In FQWK, the similarity of the neighborhood-pair substructure between two nodes is measured via the superposition amplitude of quantum walks between those nodes. The quantum interference in this kind of local substructures provides more information on the substructures so that FQWK can capture finer-grained local structural features of graphs. In addition, to efficiently compute the transition amplitudes of multistep discrete-time quantum walks, a fast recursive method is designed. Thus, compared with all the existing kernels based on the quantum walk, FQWK has the highest computation speed. Extensive experiments demonstrate that FQWK outperforms state-of-the-art graph kernels in terms of classification accuracy for unattributed graphs. Meanwhile, it can be applied to distinguish a larger family of graphs, including cospectral graphs, regular graphs, and even strong regular graphs, which are not distinguishable by classical walk-based methods.
0 Replies

Loading