Abstract: Estimating an individual treatment effect (ITE) is essential to personalized decision-making. However, existing methods for estimating the ITE often rely on unconfoundedness, an assumption that is fundamentally untestable with observed data. To this end, this paper proposes a method for sensitivity analysis of the ITE, a way to estimate a range of the ITE under unobserved confounding. The method we develop quantifies unmeasured confounding through a marginal sensitivity model and then adapts the framework of conformal inference to estimate an ITE interval at a given confounding strength. In particular, we formulate this sensitivity analysis problem as one of conformal inference under distribution shift, and we extend existing methods of covariate-shifted conformal inference to this more general setting. The result is a predictive interval that has guaranteed nominal coverage of the ITE, a method that provides coverage with distribution-free and nonasymptotic guarantees. We evaluate the method on synthetic data and illustrate its application in an observational study.
0 Replies
Loading