RABERT: Relation-Aware BERT for Target-Oriented Opinion Words ExtractionOpen Website

2021 (modified: 16 Mar 2022)CIKM 2021Readers: Everyone
Abstract: Targeted Opinion Word Extraction (TOWE) is a subtask of aspect-based sentiment analysis, which aims to identify the correspondingopinion terms for given opinion targets in a review. To solve theTOWE task, recent works mainly focus on learning the target-aware context representation that infuses target information intocontext representation by using various neural networks. However,it has been unclear how to encode the target information to BERT,a powerful pre-trained language model. In this paper, we proposea novel TOWE model, RABERT (Relation-Aware BERT), that canfully utilize BERT to obtain target-aware context representations.To introduce the target information into BERT layers clearly, wedesign a simple but effective encoding method that adds targetmarkers indicating the opinion targets to the sentence. In addi-tion, we find that the neighbor word information is also importantfor extracting the opinion terms. Therefore, RABERT employs thetarget-sentence relation network and the neighbor-aware relationnetwork to consider both the opinion target and the neighbor wordsinformation. Our experimental results on four benchmark datasetsshow that RABERT significantly outperforms the other baselinesand achieves state-of-the-art performance. We also demonstrate theeffectiveness of each component of RABERT in further analysis
0 Replies

Loading