Abstract: Mobile cameras, despite their significant advancements, still have difficulty in low-light imaging due to compact sensors and lenses, leading to longer exposures and motion blur. Traditional blind deconvolution methods and learning-based deblurring methods can be potential solutions to remove blur. However, achieving practical performance still remains a challenge. To address this, we propose a learning-based deblurring framework for smartphones, utilizing wide and ultra-wide cameras as a hybrid camera system. We simultaneously capture a long-exposure wide image and short-exposure burst ultra-wide images, and utilize the burst images to deblur the wide image. To fully exploit burst ultra-wide images, we present HCDeblur, a practical deblurring framework that includes novel deblurring networks, HC-DNet and HC-FNet. HC-DNet utilizes motion information extracted from burst images to deblur a wide image, and HC-FNet leverages burst images as reference images to further enhance a deblurred output. For training and evaluating the proposed method, we introduce the HCBlur dataset, which consists of synthetic and real-world datasets. Our experiments demonstrate that HCDeblur achieves state-of-the-art deblurring quality. Codes and datasets are available at https://cg.postech.ac.kr/research/HCDeblur.
Loading