Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex OptimizationDownload PDFOpen Website

2016 (modified: 26 Jan 2025)CVPR 2016Readers: Everyone
Abstract: This paper studies the Tensor Robust Principal Component (TRPCA) problem which extends the known Robust PCA [4] to the tensor case. Our model is based on a new tensor Singular Value Decomposition (t-SVD) [14] and its induced tensor tubal rank and tensor nuclear norm. Consider that we have a 3-way tensor X ε R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n1×n2×n3</sup> such that X = L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> + S <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> , where L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> has low tubal rank and <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">S0 is</sub> sparse. Is that possible to recover both components? In this work, we prove that under certain suitable assumptions, we can recover both the low-rank and the sparse components exactly by simply solving a convex program whose objective is a weighted combination of the tensor nuclear norm and the l1-norm, i.e., min L, E ||L||* + λ||ε||1, s.t. X = L + ε, where λ = 1/√max(n <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> , n <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> )n <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> . Interestingly, TRPCA involves RPCA as a special case when n <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> = 1 and thus it is a simple and elegant tensor extension of RPCA. Also numerical experiments verify our theory and the application for the image denoising demonstrates the effectiveness of our method.
0 Replies

Loading