Cyclic pattern kernels for predictive graph miningOpen Website

2004 (modified: 12 Nov 2022)KDD 2004Readers: Everyone
Abstract: With applications in biology, the world-wide web, and several other areas, mining of graph-structured objects has received significant interest recently. One of the major research directions in this field is concerned with predictive data mining in graph databases where each instance is represented by a graph. Some of the proposed approaches for this task rely on the excellent classification performance of support vector machines. To control the computational cost of these approaches, the underlying kernel functions are based on frequent patterns. In contrast to these approaches, we propose a kernel function based on a natural set of cyclic and tree patterns independent of their frequency, and discuss its computational aspects. To practically demonstrate the effectiveness of our approach, we use the popular NCI-HIV molecule dataset. Our experimental results show that cyclic pattern kernels can be computed quickly and offer predictive performance superior to recent graph kernels based on frequent patterns.
0 Replies

Loading