Execution-Guided Neural Program SynthesisDownload PDF

Published: 21 Dec 2018, Last Modified: 05 May 2023ICLR 2019 Conference Blind SubmissionReaders: Everyone
Abstract: Neural program synthesis from input-output examples has attracted an increasing interest from both the machine learning and the programming language community. Most existing neural program synthesis approaches employ an encoder-decoder architecture, which uses an encoder to compute the embedding of the given input-output examples, as well as a decoder to generate the program from the embedding following a given syntax. Although such approaches achieve a reasonable performance on simple tasks such as FlashFill, on more complex tasks such as Karel, the state-of-the-art approach can only achieve an accuracy of around 77%. We observe that the main drawback of existing approaches is that the semantic information is greatly under-utilized. In this work, we propose two simple yet principled techniques to better leverage the semantic information, which are execution-guided synthesis and synthesizer ensemble. These techniques are general enough to be combined with any existing encoder-decoder-style neural program synthesizer. Applying our techniques to the Karel dataset, we can boost the accuracy from around 77% to more than 90%.
16 Replies