Toward predictive machine learning for active vision

Emmanuel Daucé

Feb 15, 2018 (modified: Feb 15, 2018) ICLR 2018 Conference Blind Submission readers: everyone Show Bibtex
  • Abstract: We develop a comprehensive description of the active inference framework, as proposed by Friston (2010), under a machine-learning compliant perspective. Stemming from a biological inspiration and the auto-encoding principles, a sketch of a cognitive architecture is proposed that should provide ways to implement estimation-oriented control policies. Computer simulations illustrate the effectiveness of the approach through a foveated inspection of the input data. The pros and cons of the control policy are analyzed in detail, showing interesting promises in terms of processing compression. Though optimizing future posterior entropy over the actions set is shown enough to attain locally optimal action selection, offline calculation using class-specific saliency maps is shown better for it saves processing costs through saccades pathways pre-processing, with a negligible effect on the recognition/compression rates.
  • TL;DR: Pros and cons of saccade-based computer vision under a predictive coding perspective
  • Keywords: active inference, predictive coding, motor control