Domain adaptation for biomedical image segmentation using adversarial trainingDownload PDF

Mehran Javanmardi, Tolga Tasdizen

04 Aug 2020OpenReview Archive Direct UploadReaders: Everyone
Abstract: Many biomedical image analysis applications require segmentation. Convolutional neural networks (CNN) have become a promising approach to segment biomedical images; however, the accuracy of these methods is highly dependent on the training data. We focus on biomedical image segmentation in the context where there is variation between source and target datasets and ground truth for the target dataset is very limited or non-existent. We use an adversarial based training approach to train CNNs to achieve good accuracy on the target domain. We use the DRIVE and STARE eye vasculture segmentation datasets and show that our approach can significantly improve results where we only use labels of one domain in training and test on the other domain. We also show improvements on membrane detection between MIC-CAI 2016 CREMI challenge and ISBI2013 EM segmentation challenge datasets.
0 Replies

Loading