Mobility-Aware Joint Task Scheduling and Resource Allocation for Cooperative Mobile Edge Computing

Published: 01 Jan 2021, Last Modified: 23 Aug 2024IEEE Trans. Wirel. Commun. 2021EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Mobile edge computing (MEC) has emerged as a new paradigm to assist low latency services by enabling computation offloading at the network edge. Nevertheless, human mobility can significantly impact the offloading decision and performance in MEC networks. In this context, we propose device-to-device (D2D) cooperation based MEC to expedite the task execution of mobile user by leveraging proximity-aware task offloading. However, user mobility in such distributed architecture results in dynamic offloading decision that instigates mobility-aware task scheduling in our proposed framework. We jointly formulate task assignment and power allocation to minimize the total task execution latency by taking account of user mobility, distributed resources, tasks properties, and energy constraint of the user device. We first propose Genetic Algorithm (GA)-based evolutionary scheme to solve our formulated mixed-integer non-linear programming (MINLP) problem. Then we propose a heuristic named mobility-aware task scheduling (MATS) to obtain effective task assignment with low complexity. The extensive evaluation under realistic human mobility trajectories provides useful insights into the performance of our schemes and demonstrates that, both GA and MATS achieve better latency than other baseline schemes while satisfying the energy constraint of mobile device.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview