Density Ratio Estimation-based Bayesian Optimization with Semi-Supervised Learning

21 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Global optimization, Bayesian optimization, Density ratio estimation-based Bayesian optimization
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Bayesian optimization has attracted huge attention from diverse research areas in science and engineering, since it is capable of finding a global optimum of an expensive-to-evaluate black-box function efficiently. In general, a probabilistic regression model, e.g., Gaussian processes and Bayesian neural networks, is widely used as a surrogate function to model an explicit distribution over function evaluations given an input to estimate and a training dataset. Beyond the probabilistic regression-based Bayesian optimization, density ratio estimation-based Bayesian optimization has been suggested in order to estimate a density ratio of the groups relatively close and relatively far to a global optimum. Developing this line of research further, a supervised classifier can be employed to estimate a class probability for the two groups instead of a density ratio. However, the supervised classifiers used in this strategy are prone to be overconfident for a global solution candidate. To solve this problem, we propose density ratio estimation-based Bayesian optimization with semi-supervised learning. Finally, we demonstrate the experimental results of our methods and several baseline methods in two distinct scenarios with unlabeled point sampling and a fixed-size pool.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4079
Loading