Co-LDL: A Co-training-based Label Distribution Learning Method for Tackling Label Noise

Zeren Sun, Huafeng Liu, Qiong Wang, Tianfei Zhou, Qi Wu, Zhenmin Tang

04 Feb 2022OpenReview Archive Direct UploadReaders: Everyone
Abstract: Performances of deep neural networks are prone to be degraded by label noise due to their powerful capability in fitting training data. Deeming low-loss instances as clean data is one of the most promising strategies in tackling label noise and has been widely adopted by state-of-the-art methods. However, prior works tend to drop high-loss instances directly, neglecting their valuable information. To address this issue, we propose an end-to-end framework named Co-LDL, which incorporates the low-loss sample selection strategy with label distribution learning. Specifically, we simultaneously train two deep neural networks and let them communicate useful knowledge by selecting low-loss and high-loss samples for each other. Low-loss samples are leveraged conventionally for updating network parameters. On the contrary, high-loss samples are trained in a label distribution learning manner to update network parameters and label distributions concurrently. Moreover, we propose a self-supervised module to further boost the model performance by enhancing the learned representations. Comprehensive experiments on both synthetic and real-world noisy datasets are provided to demonstrate the superiority of our Co-LDL method over state-of-the-art approaches in learning with noisy labels.
0 Replies

Loading