Modeling steep slope devices: From circuits to architectures

Published: 01 Jan 2014, Last Modified: 13 Nov 2024DATE 2014EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Steep Slope devices, with Heterojunction Tunnel FETs (TFETs) in particular, have been proposed as a viable solution to overcome the subthreshold slope limitation in existing CMOS technology and achieve ultra-low voltage operation with acceptable performance. However, state-of-the-art FinFET technologies continue to demonstrate superior performance than steep slope devices in application domains demanding peak single threaded performance. In this context, we examine different computing paradigms where TFET technologies can be used, not just as a ‘drop in’ replacement, but as an additional parameter to augment the architectural design space. This greatly widens the scope of optimizations for performance and power. We investigate the tradeoffs between device and architectures in general purpose processors when performance, power and temperature are individually constrained. We also synthesize examples of domain-specific accelerators used in computer vision using in-house TFET standard cell libraries to demonstrate the energy benefits of designing TFET-based accelerators. We demonstrate that synthesizing these accelerators using TFETs reduces energy by over 6X in comparison to an equivalent isovoltage CMOS-based design and by over 30% in comparison to an iso-performance CMOS design.
Loading