Fast Inference with Min-Sum Matrix Product.Download PDFOpen Website

2011 (modified: 10 Nov 2022)IEEE Trans. Pattern Anal. Mach. Intell.2011Readers: Everyone
Abstract: The MAP inference problem in many graphical models can be solved efficiently using a fast algorithm for computing min-sum products of n × n matrices. The class of models in question includes cyclic and skip-chain models that arise in many applications. Although the worst-case complexity of the min-sum product operation is not known to be much better than O(n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> ), an O(n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2.5</sup> ) expected time algorithm was recently given, subject to some constraints on the input matrices. In this paper, we give an algorithm that runs in O(n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> log n) expected time, assuming that the entries in the input matrices are independent samples from a uniform distribution. We also show that two variants of our algorithm are quite fast for inputs that arise in several applications. This leads to significant performance gains over previous methods in applications within computer vision and natural language processing.
0 Replies

Loading