Keywords: Foundation model, Urban Spatio-Temporal Learning, Diffusion Transformer, Prompt Learning
TL;DR: We introduce a foundation model for open-world urban spatio-temporal learning, which integrates diverse data types and address multiple tasks.
Abstract: The urban environment is characterized by complex spatio-temporal dynamics arising from diverse human activities and interactions. Effectively modeling these dynamics is essential for understanding and optimizing urban systems. In this work, we introduce UrbanDiT, a foundation model for open-world urban spatio-temporal learning that successfully scale up diffusion transformers in this field. UrbanDiT pioneers a unified model that integrates diverse spatio-temporal data sources and types while learning universal spatio-temporal patterns across different cities and scenarios. This allows the model to unify both multi-data and multi-task learning, and effectively support a wide range of spatio-temporal applications. Its key innovation lies in the elaborated prompt learning framework, which adaptively generates both data-driven and task-specific prompts, guiding the model to deliver superior performance across various urban applications.
UrbanDiT offers three primary advantages: 1) It unifies diverse data types, such as grid-based and graph-based data, into a sequential format, allowing to capture spatio-temporal dynamics across diverse scenarios of different cities; 2) With masking strategies and task-specific prompts, it supports a wide range of tasks, including bi-directional spatio-temporal prediction, temporal interpolation, spatial extrapolation, and spatio-temporal imputation; and 3) It generalizes effectively to open-world scenarios, with its powerful zero-shot capabilities outperforming nearly all baselines with training data. These features allow UrbanDiT to achieves state-of-the-art performance in different domains such as transportation traffic, crowd flows, taxi demand, bike usage, and cellular traffic, across multiple cities and tasks. UrbanDiT sets up a new benchmark for foundation models in the urban spatio-temporal domain. Code and datasets are publicly available at https://anonymous.4open.science/r/UrbanDiT.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 858
Loading