Material Classification Using Frequency-and Depth-Dependent Time-of-Flight DistortionDownload PDFOpen Website

2017 (modified: 10 Nov 2022)CVPR 2017Readers: Everyone
Abstract: This paper presents a material classification method using an off-the-shelf Time-of-Flight (ToF) camera. We use a key observation that the depth measurement by a ToF camera is distorted in objects with certain materials, especially with translucent materials. We show that this distortion is caused by the variations of time domain impulse responses across materials and also by the measurement mechanism of the existing ToF cameras. Specifically, we reveal that the amount of distortion varies according to the modulation frequency of the ToF camera, the material of the object, and the distance between the camera and object. Our method uses the depth distortion of ToF measurements as features and achieves material classification of a scene. Effectiveness of the proposed method is demonstrated by numerical evaluation and real-world experiments, showing its capability of even classifying visually similar objects.
0 Replies

Loading