Abstract: We propose a verb suggestion method which uses candidate sets and domain adaptation to incorporate error patterns produced by ESL learners. The candidate sets are constructed from a large scale learner corpus to cover various error patterns made by learners. Furthermore, the model is trained using both a native corpus and the learner corpus via a domain adaptation technique. Experiments on two learner corpora show that the candidate sets increase the coverage of error patterns and domain adaptation improves the performance for verb suggestion.
0 Replies
Loading