Efficient Higher-Order CRFs for Morphological TaggingOpen Website

2013 (modified: 04 Sept 2019)EMNLP 2013Readers: Everyone
Abstract: Training higher-order conditional random fields is prohibitive for huge tag sets. We present an approximated conditional random field using coarse-to-fine decoding and early updating. We show that our implementation yields fast and accurate morphological taggers across six languages with different morphological properties and that across languages higher-order models give significant improvements over 1-order models.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview