Exploring Sentiment in Social Media: Bootstrapping Subjectivity Clues from Multilingual Twitter Streams
Abstract: We study subjective language in social media and create Twitter-specific lexicons via bootstrapping sentiment-bearing terms from multilingual Twitter streams. Starting with a domain-independent, highprecision sentiment lexicon and a large pool of unlabeled data, we bootstrap Twitter-specific sentiment lexicons, using a small amount of labeled data to guide the process. Our experiments on English, Spanish and Russian show that the resulting lexicons are effective for sentiment classification for many underexplored languages in social media.
0 Replies
Loading